МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Горно-Алтайский государственный университет» (ФГБОУ ВО ГАГУ, ГАГУ, Горно-Алтайский государственный университет)

Теоретическая механика

рабочая программа дисциплины (модуля)

Закреплена за кафедрой кафедра математики, физики и информатики

Учебный план 35.03.06_2020_920.plx

35.03.06 Агроинженерия

Электрооборудование и электротехнологии

Квалификация бакалавр

Форма обучения очная

Общая трудоемкость 4 ЗЕТ

Часов по учебному плану 144 Виды контроля в семестрах:

в том числе: экзамены 2

 аудиторные занятия
 58

 самостоятельная работа
 48,8

 часов на контроль
 34,75

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)		1.2)	Итого	
Недель	17	3/6		
Вид занятий	УП	РΠ	УП	РΠ
Лекции	18	18	18	18
Практические	40	40	40	40
Консультации перед экзаменом	1	1	1	1
Контроль самостоятельной работы при проведении аттестации	0,25	0,25	0,25	0,25
Консультации (для студента)	1,2	1,2	1,2	1,2
В том числе инт.	16	16	16	16
Итого ауд.	58	58	58	58
Контактная работа	60,45	60,45	60,45	60,45
Сам. работа	48,8	48,8	48,8	48,8
Часы на контроль	34,75	34,75	34,75	34,75
Итого	144	144	144	144

211, 23,03,00 200, 200, pa

Программу составил(и):

к.ф.-м.н., доцент, Михайлов С.П.

An

Рабочая программа дисциплины

Теоретическая механика

разработана в соответствии с ФГОС:

Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 35.03.06 Агроинженерия (уровень бакалавриата) (приказ Минобрнауки России от 23.08.2017г. №813)

составлена на основании учебного плана:

35.03.06 Агроинженерия

Barrel

утвержденного учёным советом вуза от 30.01.2020 протокол № 1.

Рабочая программа утверждена на заседании кафедры кафедра математики, физики и информатики

Протокол от 14.05.2020 протокол № 9

Зав. кафедрой Раенко Елена Александровна

Визирование РПД для исполнения в очередном учебном году

Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2021-2022 учебном году на заседании кафедры кафедра математики, физики и информатики				
Протокол от 2021 г. № Зав. кафедрой Раенко Елена Александровна				
Зав. кафедрои г аснко Елена Александровна				
Визирование РПД для исполнения в очередном учебном году				
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2022-2023 учебном году на заседании кафедры кафедра математики, физики и информатики				
Протокол от				
Визирование РПД для исполнения в очередном учебном году				
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2023-2024 учебном году на заседании кафедры кафедра математики, физики и информатики				
Протокол от 2023 г. № Зав. кафедрой Раенко Елена Александровна				
Визирование РПД для исполнения в очередном учебном году				
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2024-2025 учебном году на заседании кафедры кафедра математики, физики и информатики				
Протокол от				

	1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ					
Ī	1.1 Цели: Изучение методов решения задач теоретической механики, применяемых в инженерных расчетах; развитие					
L	логического мышления.					
ſ	1.2 Задачи: Научиться решать задачи дисциплины "Теоретическая механика", применяемые в инженерных					

	2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП					
Циі	кл (раздел) ООП:	E1.O.19				
2.1	Требования к предва	рительной подготовке обучающегося:				
2.1.1	Математика					
2.1.2	Механика					
	2.2 Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:					
2.2.1	Материаловедение. Технология конструкционных материалов					
2.2.2	Сопротивление материалов					
2.2.3	Теория механизмов и машин					
2.2.4	Гидравлика					
2.2.5	Детали машин и основ	ы конструирования				
2.2.6	Электропривод					

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ОПК-1: Способен решать типовые задачи профессиональной деятельности на основе знаний основных законов математических и естественных наук с применением информационно-коммуникационных технологий

ИД-1.ОПК-1: Знает методы и пути приобретения новых математических и естественнонаучных общепрофессиональных знаний

Знает методы и пути приобретения новых естественнонаучных общепрофессиональных знаний

ИД-2.ОПК-1: Умеет применять общепрофессиональные математические и естественнонаучные знания в профессиональной деятельности

Умеет применять общепрофессиональные математические и естественнонаучные знания в профессиональной деятельности.

ИД-3.ОПК-1: Владеет навыками использования современных образовательных и информационнокоммуникационных технологий для повышения квалификации профессиональной деятельности

Владеет навыками использования современных образовательных и информационно-коммуникационных технологий для повышения квалификации профессиональной деятельности.

	4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)						
Код	Наименование разделов и тем /вид Семестр / Часов Компетен- Литература Инте Примечание						
занятия	занятия/	Kvpc		шии		ракт.	_
	Раздел 1. Лекции, практические,						
	сам.работа						

1.1	Раздел 1. Основные понятия механики.	2	18	Л1.1 Л1.2	0	
	Кинематика частицы и твёрдого тела			Л1.3Л2.1		
	Лекция 1. Механика. Классическая и			V11.0V12.1		
	· ·					
	квантовая механики. Нерелятивистская					
	(классическая) и релятивистская					
	механики. Механика Ньютона. Свойства					
	пространства и времени в механике					
	Ньютона. Основные абстрактные					
	понятия механики: частица, твёрдое тело					
	(ТТ), сплошная среда, механическая					
	система (МС). Кинематика, статика и					
	динамика. Система от-счёта. Описание					
	положения частицы в координатной и					
	векторной форме; связь этих форм.					
	Лекция 2. Кинематика. Траектория.					
	Уравнения движения, перемещение,					
	скорость и ускорение частицы в					
	координатной и векторной форме; связь					
	этих форм. Частные случаи движения					
	частицы. Движение брошенного тела.					
	Лекция 3. Поступательное движение и					
	вращение ТТ вокруг неподвижной оси.					
	Вращение					
	ТТ вокруг неподвижной точки. Углы					
	Эйлера; формула Эйлера. Произвольное					
	движение ТТ; теорема Шаля. Число					
	степеней свободы. Относительность					
	движения. Абсолютное, переносное,					
	относительное движение. Теоремы					
	сложения скоростей и ускорений.					
	Раздел 2. Основные понятия и законы					
	динамики.					
	Лекция 4. Динамика. Инертная масса.					
	Импульс частицы. Сила. Три закона					
	Ньютона. Равнодействующая сил.					
	Инерциальная (ИСО) и неинерциальная					
	(НСО) система отсчёта. Принцип					
	относительности Галилея;					
	преобразования Галилея. Две задачи и					
	принцип причинности классической					
	механики. Интегралы движения. Силы в					
	механике Ньютона: силы гравитации,					
	упругости и трения. Момент силы					
	(вращающий момент).					
	Движение в НСО. Силы инерции, их					
	проявления на Земле.					
	Раздел 3. Основные теоремы механики:					
	•					
	изменения импульса, момента импульса,					
	механической энергии. Законы					
	сохранения. Применения законов и					
	теорем динамики					
	Лекция 5. Теорема об изменении					
	импульса частицы. Импульс МС.					
	Теорема об изменении импульса МС.					
	Центр масс MC. Теорема о движении					
	центра масс. Закон сохранения импульса					
	МС, его связь с 3-м законом Ньютона.					
	Лекция 6. Момент импульса частицы и					
	МС. Теорема об изменении момента					
	импульса МС и закон его сохранения;					
	связь закона с 3-м законом Ньютона.					
	Момент инерции и момент им-пульса					
	ТТ. Основной закон динамики ТТ,					
1						
1						
1						

1	•			
	вращающегося вокруг неподвижной оси.			
	Лекция 7. Механическая работа и			
	кинетическая энергия. Мощность.			
	Кинетическая энергия частицы, МС и ТТ.			
	Теоремы об изменении кинетической			
	энергии частицы, МС и ТТ.			
	Потенциальная энергия; консервативные			
	и диссипативные силы. Потенциальная			
	энергия упругого и гравитационного			
	взаимодействий. Консервативная МС.			
	Полная механическая энергия (ПМЭ).			
	Теорема об изменении и закон			
	сохранения ПМЭ.			
	Раздел 4. Механические колебания и			
	волны.			
	Лекция 8. Основные понятия теории			
	колебаний. Механические колебания.			
	Свободные колебания линейного			
	гармонического осциллятора в			
	отсутствие трения. Вынужденные			
	колебания линейного гармонического			
	осциллятора в отсутствие трения.			
	Резонанс. Свободные и вынужденные			
	колебания с учётом вязкого трения при			
	малых колебаниях.			
	Лекция 9. Волна. Механическая волна.			
	Энергия волны; плотность потока			
	энергии (вектор Умова). Уравнения			
	плоской и сферической волн. Затухание			
	волн; закон Бугера. Дисперсия волн.			
	Интерференция волн; когерентные			
	источники, максимумы и минимумы			
	интерференционной картины.			
	Дифракция волн; принцип Гюйгенса.			
	Эффект Доплера.			
	/Лек/			

1.2	Раздел 1. Основные понятия механики. Кинематика частицы и твёрдого тела Тема 1. Кинематика точки и поступательного движения твердого тела (ТТ). Тема 2. Кинематика кругового движения частицы и вращения ТТ вокруг неподвижной оси и точки. Тема 3. Сложное движение точки. Раздел 2. Основные понятия и законы динамики. Тема 4. Основной закон механики. Две задачи динамики. Раздел 3. Основные теоремы механики: изменения импульса, момента импульса, механической энергии. Законы сохранения. Применения законов и теорем динамики Тема 5. Закон сохранения импульса. Теорема об изменении импульса. Теорема о движении центра масс. Тема 6. Работа силы. Мощность. Теоремы об изменении механической энергии. Закон сохранения полной механической энергии. Тема 7. Смешанные задачи на энергию и импульс. Тема 8. Теорема об изменении момента импульса. Закон сохранения момента импульса. Закон сохранения момента импульса. Тема 9. Свободные и вынужденные малые колебания. Тема 9. Свободные и вынужденные малые колебания. Тема 10. Упругие волны. Эффект Доплера. Тема 11. Запасное занятие. /Пр/	2	40	Л1.1 Л1.2 Л1.3Л2.1	16	
1.3	Задания в файле "Раб_прогр_теор_мех_2020_ИТО.pdf" в приложении /Ср/ Раздел 2. Промежуточная аттестация	2	48,8	Л1.1 Л1.2 Л1.3Л2.1	0	
	газдел 2. промежуточная аттестация (экзамен)					
2.1	Подготовка к экзамену /Экзамен/	2	34,75	Л1.1 Л1.2 Л1.3Л2.1	0	
2.2	Контроль СР /КСРАтт/	2	0,25	Л1.1 Л1.2 Л1.3Л2.1	0	
2.3	Контактная работа /КонсЭк/	2	1	Л1.1 Л1.2 Л1.3Л2.1	0	
	Раздел 3. Консультации					
3.1	Консультация по дисциплине /Конс/	2	1,2	Л1.1 Л1.2 Л1.3Л2.1	0	

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

5.1. Контрольные вопросы и задания

Комплект заданий для контрольной работы №1

по дисциплине Теоретическая механика

Часть 1

Раздел 1. Статика

Вариант 1

1.По направлению стропильной ноги, наклоненной к горизонту под углом α =450, действует сила Q = 2,5 кH. Какое усилие S возникает при этом по направлению горизонтальной затяжки и какая сила N действует на стену по отвесному направлению? (S=N = 1,77 кH)

2.Однородный стержень AB, длина которого 1 м, а вес 20 H, подвешен горизонтально на двух параллельных веревках AC и BD. К стержню в точке E на расстоянии AE=1/4 м подвешен груз P=120 H. Определить натяжения веревок TC и TD.

Вариант 2

1.Однородный стержень АВ веса 160 H, длины 1,2 м подвешен в точке С на двух тросах АС и СВ одинаковой длины, равной 1 м. Определить натяжения тросов.

2. Горизонтальный стержень AB веса 100 Н может вращаться вокруг неподвижной оси шарнира А. Конец В оттягивается кверху посредством перекинутой через блок нити, на которой подвешена гиря веса P=150 Н. В точке, находящейся на расстоянии 20 см от конца В, подвешен груз Q веса 500 Н. Как велика длина х стержня AB, если он находится в равновесии? Часть 2

Раздел 2. Кинематика

Вариант 1

- 1. Точка движется по закону $x = 4 \sin 2t$, $y = 3 \sin 2t$. Найти траекторию и закон движения по ней, а также скорость и ускорение при t = 1c.
- 2. Радиус-вектор частицы меняется по закону $r = a(1-\alpha t)$. Найти: 1) скорость и ускорение частицы; 2) промежуток времени, по истечению которого частица вернется в исходную точку.

Вариант 2

- 1. Спрыгнув с малой начальной скоростью с вышки высотой 5м, пловец погрузился в воду на 2м. Каковы ускорение и время его равнозамедленного движения в воде?
- 2. Точка движется по плоскости так, что ее тангенциальное ускорение постоянно, а нормальное ускорение пропорционально t. В начальный момент времени точка покоится. Найти зависимость от пройденного пути s радиуса R траектории точки и ее полное ускорение a.

Вариант 3

- 1. Диск начинает вращаться с угловым ускорением 0,04рад/с2. Через какое время вектор полного ускорения точек обода будет иметь угол 450 со скоростью?
- 2. Диск радиусом 20см начинает вращаться с постоянным угловым ускорением 2рад/с2. Каковы полное ускорение и скорость точек обода через 2с?

Вариант 4

- 1. Поезд идет по прямому участку пути со скоростью 30м/с и вспугивает ворону, сидящую на проводах. Она летит от поезда перпендикулярно пути со скоростью 10м/с. Куда и с какой скоростью летит ворона для пассажира у окна вагона?
- 2. Точка движется со скоростью 5м/с по ободу диска диаметром 6м. Диск вращается в обратную сторону, имея в данный момент времени угловую скорость 4рад/с и угловое ускорение 4рад/с2. Найти абсолютное ускорение точки в этот момент.

Вариант 5

- 1. Точка движется по дуге окружности со скоростью v = at, где a = 0.5 м/с2. Найти полное ускорение в момент, когда она пройдет 0.1 длины окружности после начала движения.
- 2. Спрыгнув с малой начальной скоростью с вышки высотой 10м, пловец погрузился в воду на 6м. Каковы ускорение и время его равнозамедленного движения в воде?

Вариант 6

- 1. Имея начальную скорость 2рад/с, колесо из-за трения в оси остановилось через 10 оборотов. Найти угловое ускорение, считая его постоянным.
- 2. Твердое тело начинает вращаться вокруг неподвижной оси с угловым ускорением at3. Через какое время после начала вращения вектор полного ускорения будет составлять угол 450 с ее вектором скорости? Вариант 7
- 1. В полдень Горно-Алтайск наиболее близок к Солнцу. Каково в это время его ускорение относительно Солнца?
- 2. Диск начинает вращаться с угловым ускорением 0,04рад/с2. Через какое время вектор полного ускорения точек обода будет иметь угол 300 со скоростью?

Вариант 8

- 1. Точка на ободе диска радиусом 1м имеет скорость 5м/с; затем диск остановился через 5с равнозамедленного движения. Сколько оборотов сделал диск до остановки?
- 2. Точка движется по плоскости так, что ее тангенциальное ускорение постоянно, а нормальное ускорение пропорционально t4. В начальный момент времени точка покоится. Найти зависимость от пройденного пути s радиуса R траектории точки и ее полное ускорение a.

Вариант 9

- 1. Радиус-вектор частицы меняется по закону $r = a(1-\alpha t)$. Найти: 1) скорость и ускорение частицы; 2) промежуток времени, по истечению которого частица вернется в исходную точку.
- 2. Спрыгнув с малой начальной скоростью с вышки высотой 5м, пловец погрузился в воду на 4м. Каковы ускорение и время его равнозамедленного движения в воде?

Вариант 10

- 1. Найти кориолисово ускорение тепловоза, движущегося по экватору со скоростью 30м/с на запад.
- 12. Точка движется по закону x = 4 $\sin t$, $y = 3 \cos t$. Найти траекторию и закон движения по ней, а также скорость и ускорение при t = 1c.

Вариант 11

- 1. Шарик, подвешенный на нити, качается в вертикальной плоскости так, что его ускорения в крайнем и нижнем положениях равны по модулю друг другу. Найти угол отклонения нити в крайнем положении.
- Спрыгнув с малой начальной скоростью с вышки высотой 5м, пловец погрузился в воду на 3м. Каковы ускорение и время его равнозамедленного движения в воде?

Вариант 12

1. Диск радиусом 20см начинает вращаться с постоянным угловым ускорением 2рад/с2. Каковы полное ускорение и

скорость точек обода через 2с?

2. Имея начальную скорость 4рад/с, колесо из-за трения в оси остановилось через 15 оборотов. Найти угловое ускорение, считая его постоянным.

Комплект заданий для контрольной работы №2

по дисциплине Теоретическая механика

Раздел 3. Динамика

Вариант 1

- 1. При выстреле из орудия снаряд вылетает со скоростью 570м/с. Масса снаряда 6кг. Как велико среднее давление пороховых газов, если снаряд проходит внутри ствола 2м?
- 2. На конце жесткого стержня длиной 1м укреплен груз в 0,4кг, вращаемый в вертикальной плоскости с постоянной угловой скоростью 1рад/сек. Найти силу упругости в стержне в низшей точке траектории груза.

Вариант 2

- 1. В вагоне поезда, идущего сначала по прямолинейному пути, а затем по закруглению со скоростью 20м/с, производится взвешивание некоторого груза на пружинных весах; весы в первом случае показывают 50H, а на закруглении 51H. Определить радиус закругления.
- 2. Мальчик массой 50кг со скоростью 10м/с догоняет тележку массой 100кг, имевшую скорость 2м/с и запрыгивает на нее. Какова их новая скорость?

Вариант 3

- 1. Груз в 1кг толкнули вверх по наклонной плоскости, наклоненной под углом 300 к горизонту. Какой путь он пройдет до остановки при коэффициенте трения 0.2?
- 2. Снаряд массой 24кг вылетает из горизонтального ствола длиной 2м со скоростью 500м/с. Найти среднюю силу давления газов.

Вариант 4

- 1. Автомобиль массой 1т проходит со скоростью 20м/с верхнюю точку выпуклого моста радиусом 50м. Найти силу, с которой автомобиль давит здесь на мост.
- 2. Мальчик массой 50кг стоял на тележке, имевшей скорость 2м/с, и спрыгнул в обратную ее движению сторону так, что встал неподвижно. Какой станет скорость тележки?

Вариант 5

- 1. Груз в 200г висит на нити. Какую наибольшую скорость можно сообщить грузу, чтобы нить не лопнула?
- 2. Пуля массой 20г пробегает ствол за 0,1мс, набирая скорость 650м/с. Найти среднюю силу давления газов. Вариант 6
- 1. Автомобиль массы 1000кг движется по выпуклому мосту со скоростью 10м/с. Радиус кривизны в середине моста 10м. Определить силу давления автомобиля на мост в момент прохождения его через середину моста.
- 2. Снаряд массой 24кг вылетает из горизонтального ствола длиной 2м со скоростью 500м/с. Найти среднюю силу давления газов.

Вариант 7

- $1.\ C$ какой силой мальчик массой 50кг давит на сидение качелей длиной 4м при прохождении нижнего положения со скоростью 6м/с?
- 2. Груз в 1кг толкнули вверх по наклонной плоскости, наклоненной под углом 300 к горизонту. Какой путь он пройдет до остановки при коэффициенте трения 0.2?

Вариант 8

- 1. Определить угол наклона ствола орудия к горизонту, если цель обнаружена на расстоянии 32км и снаряд имеет начальную скорость 600м/с. Сопротивлением воздуха пренебречь.
- 2. Лифт начал подниматься равноускоренно и за 2c набрал скорость 10м/с. Каков вес пассажира массой 80кг? Вариант 9
- 1. Лифт массой 6т движется вниз со скоростью 12м/с. Какую постоянную силу надо приложить к нему, чтобы остановить на пути в 10м?
- 2. Мальчик массой 50кг со скоростью 10м/с бежит навстречу тележке массой 100кг, имевшей скорость 2м/с и запрыгивает на нее. Какова их общая скорость?

Вариант 10

- 1. Груз в 1 кг с высоты в 1 м падает на легкую площадку на пружине с коэффициентом жёсткости 200 Н/м. Каковы наибольшая скорость груза и деформация пружины?
- 2. Жёсткая горизонтальная спица длиной 50 см вращается вокруг вертикальной оси, проходящей через её конец, с постоянной угловой скоростью 2 рад/с. Груз массой 100 г может без трения двигаться по спице, и сначала покоится вблизи оси вращения. Найти наибольшую кориолисову силу инерции, действующую на груз. Показать её направление на рисунке. Вариант 11
- 1. К лежащему на столе грузу в 1 кг приложили горизонтальную постоянную силу, действовавшую 5 с. Найти силу и её работу, если груз набрал скорость 5 м/с при коэффициенте трения 0,1.
- 2. Груз в 1 кг на жестком легком стержне может без трения вращаться вокруг горизонтальной оси. Найти наибольшее давление стержня на ось, если груз отпускают из наивысшего положения с малой начальной скоростью.

Вариант 12

- 1. Найти наименьшую работу подъема груза в 100 кг на высоту 2 м по наклонной плоскости под углом 30° к горизонту при коэффициенте трения 0.5.
- 2. С какой силой мальчик массой 50 кг давит на сидение качелей в низшем их положении, если наибольший угол отклонения качелей от вертикали 90° .
- Вариант 13
- 1. К лежащему на столе грузу в 1 кг приложили горизонтальную постоянную силу, действовавшую 5 с. Найти силу и ее

работу, если груз набрал скорость 5 м/с при коэффициенте трения 0,1.

- 2. Точка движется по окружности радиуса 5м с постоянной скоростью 2м/с. Найти момент количества движения. Вариант 14
- 1. На конце жёсткого стержня способного вращаться в вертикальной плоскости вокруг горизонтальной оси, укреплён груз в 0.4 кг. Груз без начальной скорости отпускают при горизонтальном положение стержня. Найти силу упругости в стержне в низшей точке траектории груза. Трение мало.
- 2. Шарик массы 100гр бросили под углом 300 к горизонту с начальной скоростью 2м/с. Найти модуль вектора момента количества движения относительно точки бросания в зависимости от времени движения. Сопротивлением воздуха пренебречь.

5.2. Темы письменных работ

См. файл "ФОС теор_механика ИТО_2020_для_студентов.pdf" в приложении.

Фонд оценочных средств

Формируется отдельным документом в соответствии с Положением о фонде оценочных средств ГАГУ. См. файл "ФОС

6	. УЧЕБНО-МЕТОДИЧ	ЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕС	ПЕЧЕНИЕ ДИСЦИГ	ІЛИНЫ (МОДУЛЯ)
		6.1. Рекомендуемая литерат	ypa	
		6.1.1. Основная литератур	a	
	Авторы, составители	Заглавие	Издательство, год	Эл. адрес
Л1.1	Бутенин Н.В.	Курс теоретической механики. Т.1. Статика и кинематика. Т.2. Динамика: в двух томах: учебное пособие для вузов		
Л1.2	Лукашевич Н.К., Лейбович М.В.	Теоретическая механика: учебник для академического бакалавриата	Москва: Юрайт, 2016	
Л1.3	Красюк А.М., Рыков А.А.	Теоретическая механика. Задания для расчетно-графических работ: учебное пособие	Новосибирск: Новосибирский государственный технический университет, 2018	http://www.iprbookshop.ru /91445.html
		6.1.2. Дополнительная литера	тура	
	Авторы, составители	Заглавие	Издательство, год	Эл. адрес
Л2.1	Кидакоев А.М., Шайлиев Р.Ш.	Теоретическая механика: учебно- методическое пособие для тестового контроля	Черкесск: Северо- Кавказская государственная гуманитарно- технологическая академия, 2014	http://www.iprbookshop.ru/27238.html

	6.3.1 Перечень программного обеспечения				
6.3.1.1	MS Office				
6.3.1.2	MS WINDOWS				
6.3.1.3	Kaspersky Endpoint Security для бизнеса СТАНДАРТНЫЙ				
6.3.1.4	NVDA				
	6.3.2 Перечень информационных справочных систем				
6.3.2.1	База данных «Электронная библиотека Горно-Алтайского государственного университета»				
6.3.2.2	Электронно-библиотечная система IPRbooks				

7. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ					
проблемная лекция					
ситуационное задание					

8. M	8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)				
Номер аудитории Назначение		Основное оснащение			

310 B1	Учебная лаборатория детали машин и	Рабочее место преподавателя. Посадочные места
	основ конструирования. Лаборатория	обучающихся (по количеству обучающихся).
	начертательной геометрии и инженерной	Ученическая доска, столы, стулья, экран, кафедра
	графики. Кабинет технической механики. Учебная аудитория для проведения	
	семинарского типа, курсового	
	проектирования (выполнения курсовых	
	работ), групповых и индивидуальных	
	консультаций, текущего контроля и	
	промежуточной аттестации	
207 B1	Компьютерный класс. Помещение для	Рабочее место преподавателя. Посадочные места
	самостоятельной работы	обучающихся (по количеству обучающихся).
		Компьютеры с доступом в Интернет

9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По курсу предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал, лабораторных и (или) практических занятий. Распределение занятий по часам представлено в РПД. Важнейшим этапом курса является самостоятельная работа с использованием различных источников литературы.

В объем самостоятельной работы по дисциплине включается следующие главные аспекты:

- изучение теоретических вопросов по всем темам дисциплины. В соответствии с графиком проведения контрольных точек в семестре проводится две контрольные точки. Результаты оценки успеваемости заносятся в ведомость.
- подготовка к текущему контролю успеваемости студентов в контрольной точке (текущая аттестация);
- подготовка к промежуточной аттестации. Промежуточная аттестация проводится по расписанию сессии. Результаты аттестации заносятся в экзаменационно-зачетную ведомость и зачетную книжку студента (при получении положительного результата). Студенты, не прошедшие промежуточную аттестацию по графику сессии, должны ликвидировать задолженность в установленном порядке.

Общее распределение часов аудиторных занятий и самостоятельной работы по темам дисциплины и видам занятий приведено в соответствующем разделе РПД

В объем самостоятельной работы по дисциплине включается следующие главные аспекты:

- изучение теоретических вопросов по всем темам дисциплины. В соответствии с графиком проведения контрольных точек в семестре проводится две контрольные точки. Результаты оценки успеваемости заносятся в ведомость.
- подготовка к текущему контролю успеваемости студентов в контрольной точке (текущая аттестация);
- подготовка к промежуточной аттестации. Промежуточная аттестация проводится по расписанию сессии. Результаты аттестации заносятся в экзаменационно-зачетную ведомость и зачетную книжку студента (при получении положительного результата). Студенты, не прошедшие промежуточную аттестацию по графику сессии, должны ликвидировать задолженность в установленном порядке.

Общее распределение часов аудиторных занятий и самостоятельной работы по темам дисциплины и видам занятий приведено в соответствующем разделе РПД